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We describe a two-dimensional simulation of burst in neutrally buoyant drops subject to shear using a
two-component, two-speed lattice Bhatnager-Gross-Krook~BGK! fluid. Measuring the dependence of critical
shear rate for drop rupture on flow parameters, our results validate the method over a range of simulation
variables. The model’s interfacial tension parameters, undeformed drop radius, and BGK relaxation parameter
v are all found to have the correct influence upon the process of burst required by simple hydrodynamic
theory. Within the model, the macroscopic surface tension and fluid viscosity are coupled; however, this does
not limit the application of the technique.@S1063-651X~96!11008-4#

PACS number~s!: 47.55.Dz, 05.50.1q

The mechanical formation of emulsions from multicom-
ponent immiscible fluid mixtures is a complex problem of
considerable technological and theoretical interest. Advec-
tion of suspended drops and marked departures in shape be-
fore burst reduce the utility of traditional numerical methods.
However, competitor lattice Boltzmann~LB! techniques al-
low the simulator to calculate the flow of a viscous incom-
pressible fluid by solving the dynamics of colliding and
propagating prototype particles on a regular lattice using a
Boltzmann type equation@1#. The simplest and probably
most tractable lattice Boltzmann variant derives its inspira-
tion from the work of Bhatnagar, Gross, and Krook on the
Boltzmann equation of statistical physics@2#. The appropri-
ately named lattice BGK method@3–5#, then, incorporates
both isotropy and Galilean invariance directly into a model
that has the advantage of simple collision step and that has
been shown to recover single phase hydrodynamics@3–5#.

Two-dimensional lattice Boltzmannimmisciblelattice gas
~LBILG ! techniques@6# have been applied to droplets under
shear to demonstrate qualitatively correct steady-state inter-
facial hydrodynamic boundary conditions@7# and, in three
dimensions, to sheared phase separation@8#. The growing
literature on this method has been recently reviewed by
Rothmann and Zaleski@9#.

Here we report on simulations using a LBILG BGK algo-
rithm enhanced to contain different species and an interface,
with advantages similar to the model in@7#, applying the
method to the simulation of burst in an infinite, equispaced
line of neutrally buoyantred fluid component drops sus-
pended along thex axis, within ablue component, the flow
in the far field of which is a uniform shear of rateġ @10#.

As we have commented, an attractive feature of the BGK
approach is its simple collision step with a scalar collision
operatorv controlling the simulated fluid kinematic viscos-
ity through @4#
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Designated D2Q9@4#, our lattice BGK algorithm uses a
square lattice with linksci to both nearest and next-nearest
neighbors. As such we use a two-speed lattice, the multi-
speed nature of which requires careful consideration when
incorporating algorithmic extensions designed to separate
red and blue densitiesRi(x,t), Bi(x,t) @6#. As a measure of
local gradient in the color distribution, a local ‘‘color field’’
f(x,t) is calculated using direction-weighted contributions of
chromatic link densities from f(x,t)5( i j @Rj (x1ci ,t)
2Bj (x1ci ,t)]ci @6,7#. The BGK collision step redistributes
achromatic densityNi(x,t)[Ri(x,t)1Bi(x,t) to links ac-
cording to the local flow conditions. The tendency of an
equivalent automaton color segregation algorithm@11# to ac-
cumulate~denude! density on links perpendicular~parallel!
to an interface line is introduced at this stage, after Gun-
stensenet al. @6#, by applying perturbations to link densities
with reference to the direction off(x,t), the amplitude of
these perturbations having a linear dependence on a ‘‘surface
tension’’ parameters @7#. However, it should be noted that
Gunstensenet al. use a linearized lattice Boltzmann scheme
rather than the BGK method described in this work. Color is
allocated to collided, perturbed link densities in that distribu-
tion which maximizes the work done by a color flux in the
direction of the color field@6,7#. Essentially, all that is nec-
essary to achieve such an allocation is that as much red
~blue! as possible should color the density on the linkci of
largest~smallest! projection onto the direction off(x,t).

For a surface tension algorithm such as ours, it may be
shown@10,11# that the form of the macroscopic surface ten-
sionS takes the form

S~s,v!;s/v, ~2!

wherev determines lattice fluid kinematic viscosity as given
in Eq. ~1!. Other LBILG’s exhibit similar dependence ofS
upon collision parameters and hence viscosity. In@6#, S is
shown to depend directly uponl21 wherel is that eigen-
value of the collision matrix which determines the simulated
fluid kinematic viscosity throughn52 1

8(2l2111). The de-
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pendence ofS upon a collision parameter in an LB fluid has
important consequences to which we shall return.

Having initialized links within a circular central portion of
lattice with red density to form a drop, a shear in thex
direction was applied in its far field to the outlying blue fluid
by perturbing appropriate lattice-edge link densities@7#. The
observed shear rateġ generated by this perturbation was
measured as the mean value of]nx /]y over a horizontal
layer 6 sites deep, always centered a fixed vertical distance
from the axis of the line of undeformed drops. A position for
this layer, sufficiently far from the axis to render the mea-
sured shear rate sensibly independent of system and drop
size, was easy to establish forġ was observed to be constant
over much of the blue fluid.

For the large distortions encountered in this work, ap-
proximate theories cease to apply and we here characterize
drop shape and orientation only in terms ofa, the largest
distance from the center of massO to any pointA on the
perimeter~defined by mixed color sites! and drop orientation

a, the angle subtended at the horizontal byOW A.
All results derive from steady-state drops with unde-

formed radiiR: 10,R,20 lattice spacings, each evolved
~collided, streamed! for 20 000 lattice updates, over which
site density was initialized to 1.8 and unless otherwise stated,
results relate to lattices of 90360. Sizes of up to 140393
were used to minimize size effects and to facilitate compari-
sons between drops of different initial radii, when overall
lattice proportions were scaled with the initial radius. The
range of surface tension parameters was determined by re-
quiring the interfacial density perturbations be less than 10%
of a typical nonzero velocity link density. The range of pa-
rameterv was determined from considerations of equilibra-
tion time and stability@4#.

Figure 1 illustrates a progressive drop distortion with in-
creasing applied shear, the constant direction of which is
indicated by the arrows in frame 1~a!. The sequence demon-
strates progressively greater departure from an initially ellip-
soidal shape well before a critical shear rateġc is reached,
where rupture into two or more drops occurs depending on
conditions.ġc was measured by increasing the perturbations
applied to lattice-edge densities~throughout, these remained
,10% of unforced values!, allowing stabilization and mea-
suring the resulting blue fluid shear rate while observing the
final configuration of the drop~s!. In this way one can deter-
mine, to any required accuracy, the value ofġ at which
rupture occurs, and its associated error, by extrapolating the
~linear! graph of appliedġ against lattice-edge perturbation
beyond the last observedġ admitting of a whole drop. Note
that ġc was obtained, as for all data, at a fixed distance from
the drop, in a horizontal layer of sites 25 lattice units off
center.

According to approximate theory@7,12# the drop orienta-
tion a increases linearly in small applied shear. In a typical
variation betweena andġ, Fig. 2 shows this linear regime in
our data whenġ is well away from the critical value. It is
tempting to associate the point at which a curve of the form
a5A(ġ2ġc)

K fitted through these data cuts the abscissa
with the critical shear rateġc and, within the limits of obser-
vational accuracy, this did appear to be the case. However,

the latter quantity, as recorded in Figs. 3–5, was actually
determined as discussed above.

Taylor @13# first approximated, in the surface tension
~small deformation! regime, a maximum stable radiusR for
drops suspended in shear fields, which may withstand the
disruptive viscous stresses of the shearing fluid,

R5
8S~h1h8!

ġc~19h8116h!
, ~3!

with h (h8) the suspending~drop! fluid shear viscosity. In
our results~e.g., Fig. 1! even drops with large surface ten-
sions depart markedly from a spherical form before burst.
Strictly, Taylor’s estimate~3! only indicates the conditions
under which marked deviations from a spherical shape occur.
However, when one considers that the only adimensional
quantities that can be constructed with the parameters of the
problem are a capillary numberS/Rhġc and viscosity ratio
f5h/h8 it becomes clear that, at least, the general form of
the last equation is valid as a means for predictingġc in
terms of the present flow’s parameters. Equation~3! is there-
fore taken as a basis for comparison with theory and by
rearranging it we obtain a functional form for the critical
shear rateġc at a rupture of

ġc5
S

Rh
f ~f! ~4!

where f is a function of onlyf and which, on the basis of
Taylor’s approximation@Eq. ~3!#, would be of the form
f (f)5(a1bf)/(c1df). We assume that~4! applies to our
model and, substituting from~1! and~2!, we take the depen-
dence ofġc upon simulation parametersv, f, ands for this
lattice BGK fluid to be of the form

ġc;
s

R
g~r,f!S 1

22v D , ~5!

wherer denotes lattice density andg(r,f) may be related to
f (f) by using~4! and the relationn5h/r. The need for a
specific determination of the functiong(r,f) may be
avoided by restricting the BGK parameterv to take the same
value in both fluids and hencef51 in all our results.

Figures 3 and 4 exhibit the proportional dependence of
ġc upon independent parameters and 1/R as predicted by
~5!, for simulations in which the BGK relaxation parameter
for both fluids is held fixed atv50.91. For Fig. 3, the un-
deformed drop radius was maintained constant atR513. In
the case of Fig. 4 the surface tension parameter was fixed at
s50.0075, and the lattice size was scaled to maintain a con-
stant proportion between drop radiusR and the linear lattice
dimension.

Figure 5 shows the variation in 1/ġc with the BGK relax-
ation parameterv for fixed interfacial perturbation parameter
s50.0075 and undeformed radiusR513. ġc was obtained
for a range of equal red and blue fluid BGK relaxation pa-
rameters 0.7<v<1.4, thereby maintaining the viscosity ra-
tio f constant. Collision parameterv influences the model’s
macroscopic surface tension through~2! and hence~5!. This
latter equation predicts a linear dependence of 1/ġc upon
v, other parameters being constant, and Fig. 5 provides sup-
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port for this prediction. The recorded values of 1/ġc lie ap-
proximately on a line of best fit with gradient to intercept
with a ratio of20.41 against the predicted ratio20.5 and
this perhaps suggests that the model may need to be analyzed
in terms of an effective relaxation parameter, possibly of the
form v85kv. Caution needs to be exercised, however, bear-
ing in mind the excellent agreement with the simulation of
Eq. ~1! @4# and also the effect of such a modification upon
macroscopic surface tension, through~2!.

It is known @12# that high viscosity drops may be broken
~after long times! by solenoidal~irrotational! flows but are
invulnerable to flows with high vorticity. The range of our
simulated fluids’ kinematic viscosities was restricted and for
larger values of the latter parameter (n.1, corresponding to
v,0.29) the drop did not rupture with the simulationally
accessible applied~nonsolenoidal! shears, instead appearing
to align indefinitely to the horizontal.

In conclusion, using a lattice Boltzmann fluid we have
simulated rupture in neutrally buoyant, immiscible fluid

FIG. 1. Contour plots of constant red density depict a selection
of four configurations@~a!–~d!# in the progressive deformation and
eventual burst of a drop of original radiusR513 lattice spacings in
applied shear fields of 3.27031023, 3.50331023, 3.56931023,
and 3.50031023 ~time steps!21, on a lattice of 90360. The BGK
relaxation parameter in use for these data wasv50.91 and the
interfacial tension perturbation parameter wass50.0075.

FIG. 2. A typical variation ofa with ġ for a drop with unde-
formed radiusR513.v50.91 for both fluids ands50.0075 on a
lattice ofxy dimension of 90360. The line fitted through this data
is a5A(ġ2ġc)

K. Optimum fit is obtained with the parameters
A53.2,K50.27, ġc50.0057.

FIG. 3. Variation inġc , with interface perturbation parameter
s in the range 0.002<s<0.016 withv50.9 in both fluids. All
data were obtained from a drop of constant undeformed radiusR of
13 lattice units on a lattice ofxy dimension 90360. The solid line
represents a straight-line least squares fit with an ordinal intercept
of 9.531025.
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drops of various undeformed radiiR, surface tensions, and
BGK relaxationv parameters. The dependence of macro-
scopic surface tensionS upon s and v does not impinge
upon useful application of the method since a simulator may
fix n, f ~via v, v8), and thereafter adjustS through s.
However, the data of Fig. 5 suggest a possible need to refine
our present understanding of the interplay betweens and
BGK relaxation parameterv beyond first order in velocity.

The dependence of measured critical shear rateġc for drop
burst upon all independent simulation parameters is, overall,
in good agreement with a simple hydrodynamic theory and
the established relationships between, for example,v andn
@4#. The method should apply in any regime and capture the
hydrodynamic interactions of drops formedafter rupture,
which provides for useful applications.
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FIG. 4. Dependence ofġc on reciprocal drop radiusR with
10<R<20 ~lattices 76356–140392) for a drop with fixed surface
tension parameters50.0075, andv50.91 in both fluids. The solid
line represents the least squares fit to the data with an ordinal inter-
cept of22.331024 ~time steps!21.

FIG. 5. Dependence of reciprocalġc on BGK parameter
v (0.7<v<1.4), for drops with constant surface tension perturba-
tion parameters50.0075 and undeformed radiusR513 lattice
units. The solid line represents a least squares fit to these data
obtained by varying the ordinal interceptc in such a way as to
maintain the ratiom/c520.5, wherem is the gradient.
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